|
constexpr | CatromSpline (const VecType< T, N > pts[4]) |
| Construct the spline from an array of control points.
|
|
constexpr | CatromSpline (VecType< T, N > p0, VecType< T, N > p1, VecType< T, N > p2, VecType< T, N > p3) |
| Construct the spline from four control points.
|
|
constexpr Vec< T, N > | acceleration (T s) const |
| Compute the second derivative (acceleration) of the spline at a given parameter value.
|
|
constexpr Rect< T, N > | bounds () const |
| Compute the bounding box of the spline.
|
|
constexpr VecType< T, N > * | control_points () |
|
constexpr const VecType< T, N > * | control_points () const |
|
constexpr | operator PolynomialSpline< T, N > () const |
| Convert this spline to its coefficient representation.
|
|
constexpr | operator Spline () const |
| Convert to another type of cubic spline.
|
|
constexpr Vec< T, N > | operator() (T s) const |
| Evaluate the spline at a given parameter value.
|
|
template<Transform< T, N > Xf> |
CatromSpline | operator* (Xf xf) const |
| Compute a transformation of the spline.
|
|
constexpr Vec< T, N > | velocity (T s) const |
| Compute the derivative (velocity) of the spline at a given parameter value.
|
|
template<typename T, index_t N>
class geom::CatromSpline< T, N >
A cubic spline which passes smoothly through four knots.
Concatenated Catmull-Rom splines are continuous in position and velocity at the control points, but not in curvature.